Ruthenium nanoparticles inside porous [Zn4O(bdc)3] by hydrogenolysis of adsorbed [Ru(cod)(cot)]: a solid-state reference system for surfactant-stabilized ruthenium colloids.

نویسندگان

  • Felicitas Schröder
  • Daniel Esken
  • Mirza Cokoja
  • Maurits W E van den Berg
  • Oleg I Lebedev
  • Gustaaf Van Tendeloo
  • Bernadeta Walaszek
  • Gerd Buntkowsky
  • Hans-Heinrich Limbach
  • Bruno Chaudret
  • Roland A Fischer
چکیده

The gas-phase loading of [Zn4O(bdc)3] (MOF-5; bdc = 1,4-benzenedicarboxylate) with the volatile compound [Ru(cod)(cot)] (cod = 1,5-cyclooctadiene, cot = 1,3,5-cyclooctatriene) was followed by solid-state (13)C magic angle spinning (MAS) NMR spectroscopy. Subsequent hydrogenolysis of the adsorbed complex inside the porous structure of MOF-5 at 3 bar and 150 degrees C was performed, yielding ruthenium nanoparticles in a typical size range of 1.5-1.7 nm, embedded in the intact MOF-5 matrix, as confirmed by transmission electron microscopy (TEM), selected area electron diffraction (SAED), powder X-ray diffraction (PXRD), and X-ray absorption spectroscopy (XAS). The adsorption of CO molecules on the obtained Ru@MOF-5 nanocomposite was followed by IR spectroscopy. Solid-state (2)H NMR measurements indicated that MOF-5 was a stabilizing support with only weak interactions with the embedded particles, as deduced from the surprisingly high mobility of the surface Ru-D species in comparison to surfactant-stabilized colloidal Ru nanoparticles of similar sizes. Surprisingly, hydrogenolysis of the [Ru(cod)(cot)]3.5@MOF-5 inclusion compound at the milder condition of 25 degrees C does not lead to the quantitative formation of Ru nanoparticles. Instead, formation of a ruthenium-cyclooctadiene complex with the arene moiety of the bdc linkers of the framework takes place, as revealed by (13)C MAS NMR, PXRD, and TEM.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ru nanoparticles stabilized by organosilane fragments: Influence of the initial Si/Ru ratio and thermal stability

The decomposition of the organometallic ruthenium precursor [Ru(COD)(COT)] (COD: 1,5-cyclooctadiene; COT: 1,3,5cyclooctatriene) in mild conditions (20 C, 3 bar H2) in n-pentane leads, in the presence of octylsilane (H3 SiC8H17) to the formation of stable Ru nanoparticles with narrow size distribution. The solids obtained after washing and drying were fully characterized by elemental analysis, T...

متن کامل

Aqueous-Phase Hydrogenolysis of Glycerol over Re Promoted Ru Catalysts Encapuslated in Porous Silica Nanoparticles

Activity improvement of Ru-based catalysts is needed for efficient production of valuable chemicals from glycerol hydrogenolysis. In this work, a series of Re promoted Ru catalysts encapuslated in porous silica nanoparticles (denoted as Re-Ru@SiO₂) were prepared by coating silica onto the surface of chemically reduced Ru-polyvinylpyrrolidone colloids, and were used to catalyze the conversion of...

متن کامل

Novel Electroless Plating of Ruthenium for Fabrication of Palladium-Ruthenium Composite Membrane on PSS Substrate and Its Characterization

This paper focused on a novel method of electroless plating ruthenium (Ru) on solid or porous substrates like porous stainless steel (PSS) discs or ceramic tubes. A novel complexing plating bath of Ru was developed. It is proven that Ru can be deposited directly on these substrates by the bath at a temperature of 328 K and strong alkaline environment. TGA, SEM, EDX and XRD confirmed the success...

متن کامل

Platinium-Ruthenium electrocatalyst as sensor electrode for methanol oxidation

Hybrid nanocomposites of binary Pt-Ru/Polyaniline were prepared by oxidative polymerization of aniline andformation Pt and Ru nanoparticles. The polymerization of aniline was carried out in the presence of Potassiumhexa cyano Platinate (IV) and Ruthenium (III) nitrosyl nitrate as oxidizing agents. During the reaction anilinemonomers undergo oxidation and form polyaniline (PANi) whereas the redu...

متن کامل

Water-soluble metal nanoparticles with PEG-tagged 15-membered azamacrocycles as stabilizers.

The synthesis of palladium, platinum and ruthenium nanoparticles stabilized by azamacrocycles bearing polyoxyethylenated chains has been achieved by decomposition of the corresponding organometallic precursors (Pd(dba)(2), Pt(2)(dba)(3) and Ru(COD)(COT)) under dihydrogen atmosphere, whereas gold and rhodium nanoparticles have been obtained in the presence of these ligands by reduction of HAuCl(...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the American Chemical Society

دوره 130 19  شماره 

صفحات  -

تاریخ انتشار 2008